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Processing speed has long been recognized as an important metric in human
cognitive ability [1] and intelligence scale measurement [2,3,4]. It reflects the
fundamental capacity to perform daily tasks as a human, including reading
comprehension, communication, and driving. Both the quality of work and the time
required are essential to its evaluation.

To measure the intelligence scale of artificial intelligence (AI), various
benchmark datasets have been designed, analogous to tests for humans. For example,
the MMLU dataset [5] consists of multiple-choice questions to test multi-language
understanding, the GPQA dataset [6] consists of graduate-level questions on a
variety of subjects, and the MATH dataset [7] comprises competition math problems.

However, when experiments are conducted to test AI on these datasets, unlike tests
for humans, only the quality of work is emphasized, while the time aspect of the
test is typically ignored. Such an approach does not satisfy the requirements of
AI in real-world applications.

From a pragmatic perspective, many tasks are time-sensitive, such as autonomous
driving and customer service. In these applications, the output of intelligence is
required within a limited time window. Even in the early days of deep learning,
there was an implicit assumption of a time 1limit. When AlphaGo [8] defeated the
best human Go player in 2016, it adhered to the same rules, including time
constraints, as the human player.

Implications of test-time scaling

With the advent of the test-time scaling law [9], the scores achieved on these AI
benchmark datasets alone can no longer fully measure intelligence.

According to the test-time scaling law, a small model can solve harder problems by
spending more tokens "thinking", while a larger model can solve the same problem
with fewer tokens. By analogy to a human IQ test, it is as if one person spent
more time and used a long sheet of scratch paper to finish the test, while another
person used very little time and no scratch paper at all. If both achieve the same
number of correct answers, it is more rational to conclude that the person who
completed the test faster possesses higher intelligence, 1likely employing a more
efficient method.



That smaller and larger models can answer the same question correctly does not
imply they have the same intelligence level; rather, they approached the problem
differently. Therefore, without any constraint on the output, whether in terms of
the number of tokens or output speed, it is impossible to measure the actual
intelligence level of AI solely based on correctness.

From a user's perspective, estimating the time required for AI to complete tasks
has become increasingly challenging. Prior to the advent of test-time scaling,
models typically used a similar number of tokens to solve each problem. With test-
time scaling, models are incentivized to generate more tokens for certain
problems, leading to greater variability. Users now have access to metrics such as
tokens per second for the APIs they utilize, but lack information about the total
number of tokens needed for a given task. As a result, they can no longer reliably
estimate the time required for task completion.

Why speed was ignored

If processing speed is so important to intelligence, why was it historically
ignored? The reasons are twofold. First, AI was not sufficiently advanced. Early
systems could not pass the Turing test [10], solve math or coding problems, or
perform in-depth reading or writing. Given that AI was in a primitive stage, the
focus was on enabling AI to perform new tasks rather than on the speed of task
completion. Second, AI applications were all task-specific. The AI for X-ray image
processing [11] was entirely different from the AI used for recommendation systems
[12]. The applicability of AI was measured case by case by application builders,
without the need for a unified processing speed metric.

However, with the advent of large language models (LLMs) [13], AI has become
substantially more capable and generalizable, with applications spanning from
medical diagnosis [14] to recommendation systems [15]. Consequently, it is now
both rational and timely to establish a unified metric for AI processing speed.

A mental shift for evaluating AI

Additionally, there has been a significant shift in how application builders
interface with models as summarized in Table 1. Initially, developers focused on
training application-specific deep learning models, beginning with the advent of
AlexNet [16]. With the emergence of ChatGPT [13], the paradigm shifted toward
pretraining large language models (LLMs). The public release of Llama [17] enabled
post-training and fine-tuning of open models. As the capabilities of open models
advanced, such as the Qwen series [18], it became increasingly feasible to serve
an open-weight model "as is" without additional fine-tuning. More recently, the
introduction of DeepSeek [19], which substantially reduced token costs, has made
it more cost-effective to utilize hosted APIs from major AI service providers
rather than maintaining proprietary infrastructure.



Table 1. Paradigm shifts of AI usages

Paradigms Defining Moments
Deep Learning AlexNet
Pretraining LLMs ChatGPT

Open Model Fine-tuning Llama

Open Model Serving Qwen

Hosted APIs DeepSeek

Therefore, when evaluating the intelligence of AI, a shift is required from
evaluating static models, pure mathematical constructs defined by neural
architectures and parameters, to evaluating hosted AI services or APIs. It is
necessary to assess their processing speed for applicability to time-sensitive
tasks.

Existing metrics

There are established metrics to evaluate the speed of LLMs, such as time to first
token (TTFT) and tokens per second (TPS) [20]. These are suitable metrics for
serving language models, but there are two major limitations when considering them
as general metrics for AI processing speed.

Unlike the time-1limit for an IQ test, these metrics focus on the number of tokens
rather than the actual useful information produced by intelligence. For example, a
simple program without any intelligence can output random tokens at a very high
speed.

Therefore, a new metric is needed that measures the intelligent portion of the
output rather than the total volume of tokens produced per unit time.

Intelligence goodput

I propose intelligence goodput as a metric for measuring the processing speed of
AI.

Intelligence goodput is a measurement indicating the maximum amount of intelligent
information that an AI service can produce in a given amount of time, formally
expressed as:

where G is the intelligence goodput, I is the amount of intelligent information,
and t is the total time spent.



It is important to note that intelligence goodput primarily measures the output
speed of AI, rather than input, for two reasons. First, the main impact of
intelligence goodput is in human-AI interaction, which will be discussed further
in the next section. Second, AI's processing speed is mainly bounded by output,
not input. Thus, it is more meaningful to track AI progress with a metric that
measures its bottleneck.

Despite the formal definition of intelligence goodput, certain ambiguities remain
in practical measurement. First, "intelligent information" is not an unambiguous
term. Defining the amount of intelligence contained in the output of an AI model
remains a challenging task. Second, time is also subject to multiple
interpretations in computer science.

Regarding time measurement, the two popular choices are CPU time and wall time.
Wall time is preferred, as intelligence goodput is primarily relevant for human-AI
interactions and applications. End-to-end latency is more informative than
technical details such as CPU time.

To address the ambiguity in "intelligent information" in the definition, a method
for calculating intelligence goodput are proposed. We divide the score achieved by
AI on benchmark datasets by the time used to produce the answer. In this way, we
delegate the challenging task of measuring intelligence to the existing
benchmarks. It can be formally expressed as follows.

Let S =s1,89,...,8, be a set of scores from m individual AI benchmarks normalized
to the same range, and W = wy,ws,...,w, be a corresponding set of weights, where
w; represents the relative importance of each benchmark. The total time expended

across all assessments is denoted by t. Intelligence goodput G can be defined as:
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Experiments

We evaluated several high-quality models from top AI companies for their
intelligence goodput. The source data, including intelligence benchmark scores,
tokens/s, and total number of tokens used when running intelligence benchmarks,
were collected from Artificial Analysis [21].

The experimental results are shown in Table 2, which displays their intelligence
index (I) (normalized and averaged benchmark scores), speed (measured by
tokens/s), verbosity (the total number of tokens produced during all benchmarks,
including reasoning tokens), and intelligence goodput (IG). For more details on
the methodology on the calculations of the intelligence index, speed, and
verbosity, please visit the Artificial Analysis [21] website.



Table 2. Intelligence Goodput Results

Models I Speed Verbosity IG
Grok 4 Fast 60 257 60.5M 254.88
GPT-5 Medium 66 138 44.9M 202.85
Gemini 2.5 Flash 54 262 71M 199.27
GPT-5 High 68 125 85M 100.00
Gemini 2.5 Pro 60 156 101M 92.67
Claude 4.5 Sonnet 63 60 41.2M 91.75
Grok 4 65 35 121.6M 18.71

Since all models included have similar high intelligence scores, we focus mainly
on speed and verbosity. Based on their intelligence goodput, the models can be
roughly grouped into three clusters:

e The 200 club: Grok 4 Fast, GPT-5 Medium, and Gemini 2.5 Flash are in this
category with intelligence goodput ranging from around 200 to 250. Grok 4
Fast performs well in both tokens/s and output tokens, ranking at the top.
GPT-5 Medium has low verbosity, while Gemini 2.5 Flash excels in tokens/s.

e The 100 club: GPT-5 High, Gemini 2.5 Pro, and Claude 4.5 Sonnet belong to
this category with intelligence goodput ranging from around 90 to 100. GPT-5
High and Gemini 2.5 Pro have high tokens/s, while Claude 4.5 Sonnet has much
lower verbosity.

e The below 20 club: Grok 4 has both low tokens/s and high verbosity, placing
it at the bottom of the leaderboard in contrast with Grok 4 Fast, which ranks
at the top.

Discussions

Benchmark datasets score only the final answer, disregarding intermediate outputs
such as the reasoning process. This approach effectively isolates the intelligent
portion of the total output, aligning with the definition of intelligence goodput.

For AI application developers working with time-bounded tasks, the tokens-per-
second metric provides limited insight, as the number of tokens required to
complete a task remains unknown beforehand. In contrast, intelligence goodput
offers a more informative measure of how much useful work can be accomplished per
unit time.



Furthermore, incorporating intelligence goodput as an optimization target during
model training may help mitigate the verbosity problem commonly observed in LLMs.
This problem manifests as unnecessarily long chains of thought that repeatedly
revisit the same logical steps. Since longer reasoning processes result in slower
time-to-answer and consequently lower intelligence goodput, optimizing for this
metric naturally incentivizes more concise and efficient reasoning.

Limitations

The proposed intelligence goodput metric has two primary limitations.

First, it is currently limited to text-based outputs. While AI models are
increasingly multimodal, benchmark datasets for evaluating the intelligence of
outputs in other modalities, such as images, remain underdeveloped. Such outputs
are typically assessed for real-world fidelity and artistic merit rather than
intelligence.

Second, the metric is computationally expensive to measure. Calculating
intelligence goodput requires significant engineering effort to build evaluation
infrastructure capable of running APIs through comprehensive benchmark datasets.
Additionally, the cost of API token consumption for executing these benchmarks can
be substantial.

Third, tokens wasted on incorrect answers are ignored. This characteristic of
intelligence goodput as a metric may bias results in favor of more intelligent
models, since less intelligent models waste many tokens while producing incorrect
answers that contribute nothing to the final score.

Conclusions

This article introduces the concept of intelligence goodput a metric that measures
the processing speed of AI services by quantifying the rate at which they produce
intelligent information. The article advocates for a new evaluation paradigm that
focuses on dynamic, served AI systems, emphasizing the crucial interplay between
hardware, software, and models.

Ultimately, the most important takeaway is that when evaluating AI for performing
tasks traditionally performed by humans, the evaluation criteria should mirror
those used for humans. The distinction between assessing human and AI performance
for a given task will become increasingly blurred. Innovative approaches are
required to integrate processing speed into comprehensive intelligence assessments
for AIL.
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